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ABSTRACT

A numerical scheme to treat the open lateral boundary of a limited-area primitive equation model was
formulated. Although overspecification of the boundary condition is inevitable in the pointwise boundary
setting, the scheme was designed to keep the overspecification to a minimum degree. To impose the boundary
conditions, a damping technique was used. Special care was taken to deal with the boundary layer winds
at the lateral boundary. The above scheme is most suitable when gravity waves do not prevail in the vicinity

of the open boundary.

The scheme was tested in the numerical integrations of prognostic equations for a Haurwitz-type wave.
Experimental results are presented which indicate the utility of the proposed method.

1. Introduction

An appropriate specification of lateral boundary
conditions is one of the crucial factors for a successful
time integration of limited-area prediction models.
Numerous studies have been conducted to investigate
the impact of boundary conditions on the model per-
formance, and various techniques have been used to
make undesirable effects minimal (e.g., see the review
by Sundstrom and Elvius, 1979). In this paper, we
propose a boundary setting which can be applied un-
der certain circumstances to a limited-area, multi-
level primitive equation (PE) model.

It is known that a limited-area prediction by a baro-
clinic PE model with conventional boundary condi-
tions, by which values of certain variables are spec-
ified at each boundary gridpoint, is not a mathe-
matically well-posed problem (e.g., Elvius, 1977;
Sundstrom, 1977). In such a model, the intrinsic
phase speeds of the various internal gravity waves
present are different—the phase speed for certain ver-
tical modes may be larger than the local wind speed
and those for the other modes may be smaller (Elvius,
1977, Klemp and Lilly, 1978). Accordingly, -the
proper number of variables to be specified at a certain
boundary point for some modes may well be im-
proper for other modes. Thus, if the boundary con-
ditions are prescribed pointwise, the number of con-
ditions is not necessarily correct for all modes. Al-
though the overspecification may be avoided by the
split treatment of individual vertical modes (Hack
and Schubert, 1981), the situation becomes further
complicated when the effect of viscosity is included
(Sundstrom, 1977). It should be noted that the split
treatment of individual horizontal modes was sug-

gested earlier by Béland and Warn (1975) in dealing
with laterally propagating Rossby waves.

Despite the above-mentioned difficulty, acceptable
pointwise settings of boundary conditions have been
sought. Chen (1973), Chen and Miyakoda (1974) and
Miyakoda and Rosati (1977) showed that all variables
may be specified at the boundary, if they are ap-
proximately compatible to the difference equations.
In this case, the strain of overspecification can be
relaxed by local smoothing. However, the propriety
of the boundary values is not always known. Elvius
(1977) stated that the overspecification should be
avoided as much as possible. In the present work, we
took his suggestion.

There can be many different approaches to the
problem of a practical boundary setting. A common
goal is to construct a scheme which establishes
smooth fields near the boundary without causing a
noticeable erroneous impact on solutions in the in-
terior domain. The following are a few strategic mat-
ters which are considered to be useful in the for-
mulation of boundary schemes.

1) Certain assumptions may have to be made con-
cerning the time change of fields in the vicinity of the
boundaries. In some cases, the change is mainly due
to the propagation of a certain predominant wave.
In other cases, it is caused by the combination of
many waves, for which the representative phase ve-
locity can be defined locally (Orlanski, 1976) or for
a vertical column (Klemp and Lilly, 1978). Using the
idea of Orlanski (1976), one can apply the inflow and
the outflow conditions discriminately to each bound-
ary point on the basis of a duly determined local
propagation property.
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2) In some models, a dynamical relationship be-
tween variables may be postulated near the boundary
(e.g., Busalacchi and O’Brien, 1980). This serves to
limit the overspecification.

3) Boundary conditions can be imposed gradually
so that a possible noise source due to an abrupt
change of a field can be tempered.

In this paper, we formulate a new boundary setting
(Section 2) by using the considerations outlined
above, and conduct numerical tests of the scheme by
applying it to a limited-area, 11-level PE model in
the prediction of a Haurwitz-type wave (Section 3).

2. Formulation of the scheme

a. Strategy

We assume a situation in which slowly moving
long waves are the predominant disturbances near
the lateral boundary. In order to make the above as-
sumption valid, we need to damp high-frequency
waves, if excited within the domain, before they prop-
agate to the boundary. This can be done by vari-
ous means. A frequency-selective, time-integration
method (Kurihara and Tripoli, 1976) was used in the
present study. We consider that quantities near the
boundary propagate with the local wind. Therefore,
to determine whether a gridpoint is a point of inflow
or outflow for the waves propagating through the
.boundary, the direction of the local wind component
normal to the boundary was used. Thus, that point
would be called an inflow or outflow (boundary)
point. The same definition was used by Ross and
Orlanski (1982).

We specify the tangential component of the wind
at the inflow boundary points and the normal com-
ponent at all boundary points. Since the local wind
is inward (outward) at the inflow (outflow) boundary
points, the above condition corresponds to one of the
specifications which passed both the theoretical and
experimental stability tests for integrating the shal-
low-water equations (Elvius and Sundstrom, 1973).
It was adopted in a baroclinic model by Okamura
(1975).

In the present formulation, the above boundary
conditions are implemented with a technique which
is analogous to the one employed by Cho and Clark
(1981) in treating the normal velocity at the inflow
boundary points. The prediction of the wind is first
made at the boundary points using the information
of the inner domain only. Next, the obtained values
are relaxed toward the prescribed boundary values
through a damping technique. In order to perform
the first stage of the above two-step procedure in our
model, we need to specify the values at the outer open
side of the boundary boxes containing the boundary
gridpoints. The conditions to determine these values
“will be called the open side conditions. If we apply
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a simple extrapolation formulation to obtain the open
side values, the above prediction stage may cause ir-
regularity of fields at the boundary. However, the
boundary values predicted from the first stage are

“constantly adjusted toward the prescribed values at

each second stage. A large deterioration of the bound-
ary values is thus avoided.

The scheme mentioned above may seem similar
to the one proposed by Davies (1976). However, sig-

‘nificant differences exist between the two. Davies con-

sidered analytical studies concerning the well-posed-
ness of the boundary conditions (e.g., Charney, 1962;
Elvius and Sundstrom, 1973) to be disparate from
development of pragmatic techniques. All variables
are specified at the boundary points in his scheme.
We think that the results of the analytical studies for
simple cases can still be utilized in complex cases.
Hence, in our scheme, a constraint at the boundary
is placed on a subset of variables. Another difference
is that the relaxation of the fields to a specified ref-
erence state is made in a boundary zone in Davies’
scheme, whereas it is done only at the boundary
points in the present scheme. We note here that a
boundary zone is also used in the scheme proposed
by Perkey and Kreitzberg (1976), in which the model-
determined tendency is linearly combined with the
tendency specified at the boundary.

As mentioned before, the amplitudes of gravity
waves near the boundary are supposedly small in our
case. Then, assuming that the flow at the boundary
is nearly geostrophic, we can estimate the tempera-
ture gradient normal to the boundary from the ver-
tical shear of the tangential component of wind
through the thermal wind relation. This is a unique
feature of our boundary setting. Due to this con-
straint, the temperature at an inflow point is specified
not independently but by a diagnostic formula. At
an outflow point, the same formula serves as an ex-
trapolation scheme for temperature.

In the formulation of lateral boundary conditions,
special care is required in the treatment of the winds
in the planetary boundary layer. Otherwise, inertia
waves of large amplitude can be excited. We apply
an appropriate diagnostic formula to the boundary
gridpoints to determine the boundary layer wind. As
to the boundary layer temperature field near the lat-
eral boundary, a barotropic state is simply assumed.

In the following, some details of our scheme are
described. Although the formulation is made for a -
non-staggered, uniform longitude-latitude grid sys-
tem in the present study, it may be possible to devise
a similar scheme for a staggered grid system as well.
For the convenience of description, we consider the
northern boundary of a limited-area domain. There
should be no difficulties in writing the formulas for
the other three boundaries. Fig. 1 shows the config-
uration of gridpoints near the northern-boundary.
Points C and C-1 indicate the position of a boundary
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FIG. 1. Positions of the boundary gridpoint C, the gridpoint
C-1 at one grid distance inside, the open side B, and the inner
interface B-1 of a northern boundary box. Side length of a box is
Axg at the north, Axg., at the south and Ay at the west and east.

gridpoint and the one just inside of C, respectively.
The open, northern side of a boundary box, which
contains point C, is denoted by B, while the southern
interface located at the distance Ay from the open
side is designated by B-1. The above notations will
be used as subscripts to indicate quantities at corre-
sponding locations. Other notations used are o (pres-
sure normalized by surface value; used as the vertical
coordinate), ¢ (time), u (zonal component of wind),
v (meridional component of wind), T (temperature),
r (mixing ratio of water vapor), ® (geopotential of a
o-surface), p, (surface pressure), p (density at the sur-
face), R (gas constant), f (Coriolis parameter), Ax and
Ay (zonal and meridional side lengths of a boundary
box, respectively), Az (time step), £ (model level in-
dex, increasing downward) and K (level index at one
level above the top of the boundary layer).

b. Open side condition

In the present scheme, we first make the prediction
of u, v, p, and r by the box method (Kurihara and
Holloway, 1967) with the use of information which
is available in the computational domain. Required
quantities on the open side B in Fig. 1 are obtained
by the scheme presented in Table 1. The open side
condition for u, v and r is based on the linear ex-
trapolation of those quantities from points B-1 and
C toward point B. The formula for p, is derived from
the assumption that the surface pressure gradient nor-
mal to the boundary is in geostrophic balance with
u at level KX i.e.,

(2.1)

In writing (2.1), we assumed that the surface was flat.
Otherwise, it is necessary to add the term pg(9z,/9y),
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where z, is the surface height, to the left-hand side.
The thermal wind relationship is assumed for the tan-
gential component of the wind:

T _ f du o7 9 lnp,
dy RAlnec dlnoc 9y

We expect (2.1) and (2.2) may be successfully used
even if a boundary is chosen near the equator, al-
though the assumption of geostrophic balance be-
comes weak in such a case. This is because f serves
not as a divisor, but as a multiplier in the formula
used to determine the mass field. The finite difference
form of (2.2) yields the formula for Tg. The last term
in (2.2) is related to the coordinate transformation
between the pressure and the sigma system. For the
levels k = K, du/dlne in (2.2) is set to zero. The
variables u, v, p,, T and r at the interface B-1 are
given by the average of the corresponding quantities
at points C and C-1. The diffusive flux at B is de-
termined so that the diffusive flux divergence normal
to the boundary vanishes at each boundary box.

(2.2)

¢. Momentum at the boundary points

We let the momentum obtained with the open side
condition at the first stage be denoted by (#*)., where
h stands for either u or v. At the next stage, we use
a Newtonian damping method to relax (4*). toward
a prescribed time-dependent reference value (h)..
The damping may be expressed as

oh
— = —t7'(h = hy),
a1 d ( 0)
where ¢, is the relaxation time. Denoting an advanced
time level by the superscript 7 + 1, estimating the

(2.3)

TABLE 1. Open side conditions, or values at Point B in Fig. 1.

Variable Scheme
Psp Pepy — [futk = K)o Ay
Ts 1[ au] [6T] DasB
2 + Pan |
LR Ry A Py
k<K
oT DsB
Te. + In-—E . k=K
Bt [6 lna]c n DBt
$p Derive from T3 through the hydrostatic
relation
vp 2vc — vpy
(pxv)s PspUs
(pxvu)p (P+0)p(2Uc — Up.1)
(pyvv)8 (P4)pbe
(pxv1)s (P V)p(2rc — ray)

(Diffusive flux)g (Diffusive flux)s_(Ax)g,/(AX)g
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left-hand side by (A"*! — A*)/At and the right-hand
side by —(h™' — hy)/t,, and measuring ¢, in the unit
of At, i.e., t; = AAt, we obtain the formula

1
(" Ne = 7= [(ho)c + A(h*)c].

1+ 4 (2.4)

The damping is applied to both # and v at inflow
points and to only v, i.e., the normal component, at
outflow points. (Note that setting the damping coef-
ficient 4 to a very large value is equivalent to elim-
inating the relaxation of the boundary point values
to the prescribed ones.) Whether the gridpoint C is
an inflow or outflow point is determined by the di-
rection of vc_;. The four corner points of the domain
are always considered inflow points. The reference
value s, may be derived from a previous integration
of a larger domain coarse mesh model or specified
by other means. In particular, a formula to determine
the boundary layer winds is presented in Appen-
dix B.

d. Temperature at the boundary points

The temperature at point C is obtained diagnos-
tically through the finite-difference form of the ther-
mal wind relation (2.2):

1 ou
Te=Te, + =
¢l TR [f 3 lna]B_,‘Ay
T (Px)c
+ [—] In———=. (2.5
dInc B-1 (p*)C—l ( - )

We use (2.5) for the levels higher than level KX i.e.,
k < K. For k = K, du/d Ine in (2.5) is ignored. At the
four corner points of the domain, 7¢ is determined
from the average of values calculated along the zonal
and meridional directions respectively.

e. Surface pressure and mixing ratio of water vapor
at the boundary points

The predictions of p, and r at the boundary grids

are made through the use of the open side condition.

3. Numerical test

a. The numerical model

The numerical model used for the test of the pro-
posed lateral boundary setting was the 11-level PE
model constructed at the Geophysical Fluid Dynam-
ics Laboratory (GFDL), NOAA. The governing equa-
tions and the computational schemes used are ex-
plained in the paper by Kurihara and Bender (1980)
for their nested mesh model. For the test cases pre-
sented here, the number of nests was reduced to one
uniform nest, consisting of 37 X 37 boxes of 1° lon-
gitude-latitude resolution with the gridpoints located
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at the centers of the boxes. The southern and the
northern boundaries of the domain were placed at
2.5°N and 39.5°N, respectively.

The lateral boundary conditions described in the
preceding section were applied to the above-men-
tioned regional model. The level index K was set to
7, implying that level 8 (¢ = 0.895) was approximately
at the top of the boundary layer. The density p in

(2.1) was determined by (¢,,p4)/(RT},), where the

suffix 11 indicates values at level 11 (¢ = 0.992; al-
titude of ~68 m). The constant 4 which represents
the damping time scale in (2.4) was fixed at 5 for
levels 1-5, and 10 for levels 6-11.

As mentioned before, the computational scheme
proposed by Kurihara and Bender (1980) was em-
ployed in the present experiment. Their scheme in-
volves a Newtonian-type damping for smoothing the
flow field within six grid points from the lateral
boundaries. It should be noted here that the reference
value, which is similar to 4, in (2.4), in the above
damping is not prescribed but obtained from the val-

- ues at the surrounding grid points. The damping coef-

ficients used were also identical to the parameters n
mentioned in their paper.

b. Experimental design

The test of the scheme was conducted in a 48 h
prediction of the propagation of a Haurwitz-type
wave. The analytical solution is known for a non-
divergent, barotropic Haurwitz wave. We assumed
such a solution could be taken as an approximate,
though not exact, solution for the waves in the present
experiment. Accordingly, it was utilized for exami-
nation of the integration results as well as for pre-
scription of the boundary reference values. We car-
ried out the integrations of the model for the follow-
ing two cases.

- CASE 1:

The model included neither moisture nor the effect
of surface friction. The initial flow field was derived
at all levels from the following streamfunction (Phil-
lips, 1959) which expresses a Haurwitz wave on a
sphere: ’

¥ = —d’w sing + a’ cos™¢ sing cosm\,  (3.1)

where a is the radius of the earth, A the longitude and
¢ the latitude. The zonal wavenumber was set equal
to 10, i.e., m = 10. The constants w and « were chosen
to be —1.6 X 107% s7! and 4.05 X 1077 5!, respec-
tively. The wind components # and v were obtained
from u = —(1/a)dy/d¢ and v = (1/a cos¢)dY /I, re-
spectively. In the present PE model, the initial mass
ficld which was in balance with the wind field was
obtained by the procedure explained in Appendix A.

In Fig. 2, the initial wind field derived from. (3.1)
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FIG. 2. Distribution of wind vectors at level 6 (top) and surface pressure (bottom)
at the initial time. The framed area indicates the limited area domain for the in-

tegration.

at level 6 as well as the balanced initial surface pres-
sure field are presented. Waves outside of the inte-
gration domain can move into the model only
through a properly specified time-varying boundary
condition.

If the long wave specified by (3.1) is treated in the
non-divergent barotropic case, it should propagate
zonally with the angular velocity (e.g., Phillips, 1959)

m(3 + m)w — 29
V —
1+mQ2+m)’
where @ is the angular velocity of the earth. For the
constants used in this study, Eq. (3.2) yields a west-

ward propagation speed of ~10 m s~!. The model
integrations of Case 1 were performed with two dif-

3.2)

ferent specifications of reference values. In the one
integration, which we call Exp. 1A, the reference val-
ues of momentum at the boundary points were de-
rived from (3.1) with its zonal phase being shifted at
the angular velocity (3.2). In the other integration,
i.e., Exp. 1B, the above-mentioned translation speed
was slowed down to 80% of (3.2); this was done de-
liberately to test the scheme’s behavior when a some-
what inaccurate boundary condition is imposed.

CASE 2:

Both the effect of surface friction and the hydro-
logic cycle, including the latent heat release due to
the condensation of water vapor, were incorporated
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in the model. The sea surface temperature was fixed
at 302 K. The initial wind and mass fields were the
same as those in Case 1, except that the wind in the
planetary boundary layer was modified by the scheme
explained in Appendix B. The initial relative humid-
ity used was the same as described in the paper by
Kurihara and Tuleya (1974). Two model integra-
tions, i.e., Exps. 2A and 2B, were performed, starting
from the above initial condition. The specification of
the time-varying reference values at the boundary
points during the two time integrations were the same
as those for Exps. 1 A and 1B, respectively, except that
the reference winds in the boundary layer were cal-
culated by the formula in Appendix B.

¢. Results of the experiments

The numerical model used in the above-mentioned
Case 1 should behave like a shallow water equation
model unless internal inertia-gravity waves are ex-
cited. Therefore, the proposed boundary setting,
which is proper for a shallow water equation system,
was expected to produce a smooth numerical result.
In particular, if the specified boundary values were
fairly accurate, then the obtained solution will remain
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nearly exact for an entire domain; this was the case
expected for Exp. 1A.

The wind vectors at level 6 (¢ = 0.665) and the
distribution of surface pressure in Exp. 1A after 48
h of model integration are presented in the left col-
umn of Fig. 3. The corresponding wind vector in the
rnion-divergent barotropic case calculated from (3.1)
as well as the surface pressure field balanced to it are
also shown in the right column of Fig. 3. The results
indicate that the fields in Exp. 1A vary smoothly from
the inner area toward the boundary. The propagation
of the long waves in Exp. 1A was very similar to that
in a non-divergent barotropic case. It should be noted
again that the reference values specified at the bound-
ary points in Exp. 1A were taken from the analytical
solution for the non-divergent barotropic case. The
amplitude of the waves were well maintained during
the 48 h integration.

In contrast to Exp. 1A, Exp. 1B is characterized
by an inaccurate specification of the reference values
at the boundary points. The results from Exp. 1B for
the same quantities as shown for 1A are presented
in the middle column of Fig. 3. The distortion of the
wave phase due to inaccurate information at the in-
flow points is evident in the eastern third of the do-

non-divergent barotropic
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FIG. 3. Distribution of wind at level 6 (upper row) and surface pressure (lower row) after 48 h integration in Exps. 1A (left column)
and 1B (middle), and the analytical solution at 48 h in nondivergent barotropic case (right).
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main. The amplitude of the wave is slightly reduced
near the eastern edge of the domain. It is important
to note that the fields obtained after the 48 h inte-
gration were smooth and, that the effect of inaccurate
boundary specification did not appear beyond the
distance the waves were advected from the inflow
boundary.

In the Case 2 experiment, which included the ef-
fects of surface friction as well as the hydrological
process, the scheme to treat the boundary layer wind
at the boundary could be tested. The results from
Exps. 2A and 2B at 48 h are summarized in Fig. 4.
In addition to the wind vectors at level 6 and the
surface pressure distribution, the wind vectors at level
11 (¢ = 0.992) are presented in order to show the
behavior of the boundary layer wind. The wind vec-
tors at level 6 vary quite smoothly between the inner
region and the boundary points. The wind pattern in
Exp. 2A shows very good resemblance to the solution
for the non-divergent case (the upper right figure in
Fig. 3). The level 11 wind fields in both experiments
maintained patterns coherent to the level 6 winds
during the integration period, except that small dis-
tortion occurred at the outflow points for the tan-
gential component of the wind. The shape of the sur-

t=48h 20m
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face pressure wave was also well maintained in both
experiments, although once again the amplitude was
slightly damped at the inflow area in Exp. 2B. The
surface friction caused a small difference in the mass
flux across the northern and the southern boundaries,
resulting in a loss of mass on the order of a millibar
a day throughout the integration domain. We do not
know if such a change is reasonable or not.

"4, Summary and remarks

A scheme was formulated to treat the open lateral
boundary of a limited-area primitive equation model.
It is assumed that gravity waves do not prevail in the
vicinity of the open boundary. Some features of the
proposed scheme are as follows: 1) the degree of
overspecification of the boundary condition is kept
low—In particular, it is avoided in the absence of
internal gravity waves; 2) the thermal wind relation-
ship is used to specify the mass field near the bound-
ary; 3) winds at the boundary gridpoints are not re-
placed abruptly by the specified reference values, but
damped gradually toward them; and 4) special care
is taken to treat the planetary boundary layer.

Numerical tests of the scheme were conducted with
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FIG. 4. Distribution of wind at level 6 (left column), wind at level 11 (middle) and surface pressure (right)
after 48 h integration in Exps. 2A (upper row) and 2B (lower row).
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an 11-level limited-area model in which a Haurwitz-
type wave was specified at the initial time. Two cases,
1.e., one without the effects of moisture and surface
friction and the other including both of these effects,
could be integrated smoothly for 48 h with two dif-
ferent sets of reference wind prescriptions for each
case. This scheme has also been applied to a recent
numerical simulation experiment of tropical cyclones
at GFDL, and its performance so far has been sat-
isfactory. However, since in both cases the vertical
wind shear above the boundary layer was small, the
use of the thermal wind relationship in the boundary
specification was not strictly tested. This will be done
when the model is integrated with real data in future
experiments. We suspect that there may be other
cases for which the open side conditions presented
in Section 2 may have to be rectified. In doing so it
will be useful to examine some approaches taken in
the past, such as the divergence control near the
boundary (Okamura, 1975), the condition on the syn-
optic state vertical velocity (Pielke, 1974) and the
condition on the flux divergence at the boundary
(Kurihara and Bender, 1980).

It should be noted that the time-dependent refer-
ence values at the boundary cannot always be pre-
scribed. In such a case, the reference values may have
to be derived from the values at one point inside the
boundary gridpoints. In some of our recent experi-
ments; the reference values thus obtained at a certain
time level were kept unchanged until they were up-
dated after an appropriate period. This practice was
found to work well.

We also note that some physical constraints on the
model may be imposed through the specification of
the reference values. For instance, if the conservation
of total mass within the domain is desired, it can be
accomplished by adjusting the normal component of
the wind appropriately. As mentioned in Section 3,
the total mass decreased in the Case 2 integrations
in the test of our scheme. Results from subsequent
experiments indicate, however, that the total mass
can be maintained by making a small correction,
usually about several centimeters per second, to the
inflow and/or outflow at the boundary.
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APPENDIX A

Specification of the Pressure Field

In the present work, the initial mass field which
was balanced with the streamfunction (3.1) was ob-
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-tained by the relaxation of the finite-difference reverse

balance equation (see, Kurihara and Bender, 1980,
Appendix B). To perform the relaxation, we have to
specify p, and ® (geopotential of a constant s-surface)
at the boundary points of the computational domain.
Formulas to compute these boundary values are de-
rived below. .

According to Phillips (1959), the pressure field
which is balanced with the streamfunction (3.1) may
be expressed in terms of the geopotential height H of
the free surface of a barotropic model, i.e.,

H = H, + a*A(¢) + a*B(¢) cosmA
' + @?C(¢) cos2m\. (Al)

Constants Hy, A(¢), B(¢) and C(¢) are defined in his
paper. Note that both the streamfunction and H are
independent of height.

The pressure gradient force in our model must take
the value VH. We suppose that the zonal means of
surface pressure and temperature are given at the lat-
itude ¢y; we denote them by p.(¢o) and T{¢o, o),
respectively. If the temperature is approximated by
T(¢o, o) in the general expression for the pressure
gradient force in the s-coordinate system, we obtain

V& = VH — RT($o, o)V Inp,. (A2)

In making the above approximation, we assume that
the horizontal variation of 7 is not large. (The tem-
perature field in the model was computed from &
after the latter was obtained.) From (A2), the follow-
ing approximate formula may be obtained:

B(\, ¢, o)
= H(\, ) = RT{(¢o, o)[Inp«(\, $)] + E(o),

where E(o) is a o-dependent constant. Taking the
zonal mean of (A3) along ¢, yields

(i)(¢09 6) .
= H(¢o) — RT(¢o, 0)[Inpx(¢o)] + E(0). (A4)

Through the hydrostatic relation, ®(¢o, o) can be
computed for a given distribution of T(¢y, o).
From (A3) and (A4), it follows that

(b(ka ¢a 0') - ‘i)(qu, 0’) = H(k, ¢) - ﬁ(¢0)
— RT(¢o, o){In[pe(\, ¢)/Dx(d0)1}. (AS)

In particular, the left-hand side of (A5) vanishes at
the surface, i.e., for ¢ = 1. Accordingly, after some
manipulations, we obtain

(A3)

a2
Rﬂ¢0: 1)
— A(¢o) + B(¢p) cosm + C(¢) cosZmA]} . (A6)

Px(N, @) = Pul(do) exp{ [4(s)

For any other o-surfaces, we can easily derive
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Q(A, ¢’ U) = (i)(d)()’ 0')

(o, o)] [P0 9)
T(do, 1) “[ FATS

We specify p, and ® at the domain boundary by
utilizing (A6) and (A7).

] . (A7)

APPENDIX B

Specification of Boundary Layer Winds

As mentioned in the text, the winds in the plane-
tary boundary layer are obtained in a diagnostic man-
ner at the initialization of the model and also at the
specification of the reference winds at the boundary
gridpoints during the time integration of the model.
The boundary layer winds within the computational
domain are predicted after the initial time.

To derive a diagnostic formula, we postulate that
the winds below height D are expressed for each point
by

v

if{v(2) = V(D)} = Kin 55,

(BI)

where i = V=1, v(z) = u(z) + iv(z), fv(D) represents
the pressure gradient force independent of height, and
K,, denotes an eddy diffusion coefficient. Note that,
for D — oo, v(00) — v, (geostrophic wind) and the
condition v(0) = 0, (B1) expresses the Ekman spiral.
Since v(z) — v(D) vanishes for z = D, (Bl) yields

v(z) — v(D) = A{exp[—(1 + i)yz]

—exp[—(1 + in(2H - 2)]}, (B2)
where A is a complex constant and y = {f/(2K,,)}'".
If a logarithmic wind profile is assumed for z < A
(h < D), then the condition for v can be set at

z=nhas
v(h)=hlnﬁ(a—v).
h

2y 9z

(B3)

The subscript # in (B3) indicates the value at the
height A and z, is the roughness length. Determining
A from (B2) and (B3), we can derive the following
diagnostic formula after somewhat lengthy manipu-
lation:

w(z) = m(2u(D) + n(z)v(D) }

v(2) = —n(2)u(D) + m(z)v(D) (B4)
The quantities m(z) and n(z) in (B4) are

m(z)=1—d, cos\, + d, cos)\z}
n(z) = d, sin\; — d, sink,
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with
d, = di(z) = by exp{—vz}
dy = dy(z) = by exp{—Y(2H — z)}
A = Ai(2) = 00— vz
A2 = N(2) = 0 — ¥(2H — 2)
In the above expressions, by and 6, are given by
bo = (b®+ b?)* and 6, = tan"'(by/b)),
where

b, = a, cosb, + a, cosh, ~ a; cosf; + a, 00504}
b, ’

a, sinf, + a, sinf, — a; sinfd; + a, sind,

with
b, =vh, 0,=0,—(x/4), 65=v2H—h))
04 =03 — (7/4) ]
a, = exp(—0,), a;= «/fc'yal, where ;o
¢ = hln(h/zy)
a; = exp[—y(2H — h)] and a,= V2cya, D

In the present study, the approximate heights of
levels 8 and 11 were taken for D and A, respectively,
i.e., D = 926 m and £ = 68 m. In practice, the level
8 wind was used for v(D) and the winds at the lower
o-levels were approximated by those derived from
(B4) at the heights appropriately assigned for the re-
spective levels. Also, zo and K, were set equal to 0.05
cm and 5 m? s7!, respectively.
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